Structural survey on enterprises in trade (wholesale-retail sale) TYPE

Sampling survey
The enterprises included in the survey were stratified as follows:
a) By region-NUTS II
b) By 4-digit code economic activity
c) By size class of the enterprises.

In each of the major strata (geography X economic activity), the enterprises were stratified into $\mathrm{H}=5$ size strata, according to their size, determined by their annual turnover, as follows:

Class	Turnover description (amounts in Euros)		
1	1	Through	$99.999,0$
2	$100.000,0$	Through	$399.999,0$
3	$400.000,0$	Through	$1.399 .999,0$
4	$1.400 .000,0$	Through	$4.999 .999,0$
5	$5.000 .000,0$	Through	Highest

The enterprises belonging to size class 5 were surveyed exhaustively.

a. Symbols

Defining with index i the selection order of an enterprise from the sampling frame in the stratum h and symbolizing with the y one of the survey characteristics, we can define the following:
$y_{h i}$: The value of the survey characteristic y of the enterprise of order i in the stratum h
Y_{h} : The sum of the values of the characteristic y for all enterprises falling into the survey and belonging to the stratum h
Y : The sum of the values of the characteristic y for all enterprises under the survey of the stratum h. That is: $Y=\sum_{h} Y_{h i}$
N_{h} : The number of all enterprises falling into the survey and belonging to the stratum h
n_{h} : The sample size in the stratum h
m_{h} : The number of respondent units in the stratum h
r_{h} : Response rate in the stratum $h\left(r_{h}=\frac{m_{h}}{n_{h}}\right)$
$W_{h i}$: The extrapolation factor of the enterprise of order i belonging to the stratum $h,\left(W_{h i}=1 /(\right.$ Probability of selected unit i in stratum h) $\left.\cdot r^{-1}=\frac{N_{h}}{n_{h}} \cdot \frac{n_{h}}{m_{h}}=\frac{N_{h}}{m_{h}}\right)$

b. Estimation process

The estimation of Y_{h} and Y is given by the following formulas:
$\widehat{Y}_{h}=\frac{N_{h}}{m_{h}} \sum_{i=1}^{m_{h}} y_{h i}$
$\hat{Y}=\sum_{h} \hat{Y}_{h}$

c. Variance estimation

The variance estimation of \hat{Y}_{h} and \hat{Y} is given by:
$V\left(\hat{Y}_{h}\right)=\frac{N_{h}\left(N_{h}-m_{h}\right)}{m_{h}} S_{h}^{2}$,
Where:
$S_{h}^{2}=\frac{1}{m_{h}-1}\left[\sum_{i=1}^{m_{h}} y_{h i}^{2}-\frac{\left(\sum_{i=1}^{m_{h}} y_{h i}\right)^{2}}{m_{h}}\right]$,
$V(\hat{Y})=\sum_{h} V\left(\hat{Y}_{h}\right)$
The coefficient of variation (\%) of the total estimation \hat{Y} is given by:
$C V(\hat{Y})=\frac{\sqrt{V(\hat{Y})}}{\hat{Y}} * 100$

